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The discrete wavelet transform has been used in NMR spectros- in oil prospection), but by now it has pervaded many sectors
copy by several authors. We show here that the continuous wavelet of physics, mathematics, and engineering. It has been applied
transform (CWT) is also an efficient tool in that context. After in particular to the analysis of spectral lines in general (3)
reviewing briefly the analysis of spectral lines with the CWT, we and its application to NMR spectroscopy was also suggested
discuss two applications specific to NMR, namely the removal of and tested in (3, 4) . For a general survey of the wavelet
a large unwanted line and the rephasing of a signal perturbed by

method, we refer to (5, 6) or the elementary review (7) .eddy currents. More details on the CWT are given in two appen-
In a recent paper, Neue (8) has emphasized the interestdixes. q 1997 Academic Press

of the wavelet transform in dynamic NMR spectroscopy.
More precisely, he proposes to use the discrete wavelet trans-
form (DWT) to extract the dynamical behavior of a NMR1. INTRODUCTION
signal. However, it seems to us that the CWT is more effi-
cient for this kind of problem for two reasons. First, theA NMR signal or a FID s may be modeled by a linear
CWT, because of its redundancy, is a good tool for analysissuperposition of spectral lines
and feature determination while the DWT is well adapted
for data compression and signal synthesis (see Appendixs( t) Å ∑

l

sl( t) , [1.1]
A). Second, the method used in this paper is supported by
some rigorous results (see Appendix B and Note added in

where each spectral line sl has the form proof) .
The paper is organized as follows. In Sections 2 to 4,

sl( t) Å Al( t)e i (vlt/f( t ) ) . [1.2] we introduce the CWT and we present briefly the method
described in (3, 6) for the analysis of spectral lines and

The amplitude al is directly proportional to the density of asymptotic signals. In Sections 5 and 6, we present two
nuclei l which have a resonance pulsation vl . Ideally the applications of the CWT: the removal of a large spectral
phase f should be constant, but some dynamical effects can line and the rephasing of a NMR signal influenced by eddy
influence the signal and make the phase vary in time. currents. Further mathematical information is given in the

Classically, a NMR signal is visualized by its Fourier appendixes.
spectrum; nevertheless it has been shown that in some cases
it is preferable to work in the time domain (1, 2) . The time 2. THE CONTINUOUS WAVELET TRANSFORM
analysis is based on a model function for the amplitudes al

and it assumes that the phase f is constant in time. But The continuous wavelet transform (see Appendix A for
in dynamic NMR spectroscopy or in the presence of eddy the mathematical background) is a mathematical tool which
currents, the phase may suffer some time perturbation. In permits one to decompose a signal in terms of elementary
such a case, the use of a time-frequency analysis seems contributions called wavelets. These wavelets are obtained
natural. The method presented here is based on the continu- from a single function c by translations and dilations,
ous wavelet transform (CWT). This technique was origi-
nally introduced in geophysics (analysis of microseisms used

c (b ,a ) ( t) Å 1
a
cS t 0 b

a D , [2.1]
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2 BARACHE, ANTOINE, AND DEREPPE

ú 0, may be continuous or discrete. The CWT of a signal
s with the analyzing wavelet c is the convolution of s with
a scaled and conjugated wavelet ca( t) Å c(0t /a) /a :

S(b , a) Å ca∗s(b) Å 1
a * cS t 0 b

a Ds( t)dt . [2.2]

It should be remarked that we use here the so-called L 1-
normalization, with a factor 1/a in [2.1] and [2.2] . Group-
theoretical considerations (see Appendix A) lead to the L 2-
normalization, with a factor 1/

√
a , which guarantees the uni-

tarity of the CWT, but in fact the normalization is arbitrary.
FIG. 1. Support properties of the Morlet wavelet cM: For a Å 0.5, 1,The one chosen here enhances small scales, where the infor-

2 (left to right) , cab has width 3, 6, 12, respectively (top), while cab

s

hasmation lies, and is indeed used in most practical applications.
width 3, 1.5, 0.75, and peaks at 12, 6, 3 (bottom).In the Fourier domain, expression [2.2] takes the form

S(b , a) Å 1
2p * cO (av)sP (v)e ivbdv, [2.3] This is the case of the Morlet wavelet, defined by

c( t) Å e iv0te0 t2 / (2s2
0) / h( t) ,where ŝ and cO are the Fourier transforms of the signal s and

of the wavelet c, respectively. Equations [2.2] and [2.3] cO (v) Å
√
2ps0e

0 (v0v0)2s2
0/2 / hP (v) , [2.7]

show clearly that the wavelet analysis is a time-frequency
analysis, or, more properly, a time-scale analysis ( the scale where the correction term h is necessary to enforce the ad-
parameter a behaves as the inverse of a frequency). In partic- missibility condition (in the following we shall use the value
ular, relation [2.3] shows that the CWT of a signal s is a s0 Å 1). If v0s0 is sufficiently large (typically v0s0 ú 5.5) ,
filter with a constant relative bandwidth Dv /v Å const. If then h is numerically negligible. The Morlet wavelet can be
we require the wavelet c to satisfy the so-called admissibility interpreted as a bandpass linear filter centered around v Å
condition, namely v0 /a of weight 1/(s0a) (Fig. 1) . All the results presented

here have been obtained with the Morlet wavelet, but they
can easily be generalized to any analyzing wavelet whosecc å 2p * ÉcO (v)É2 dv

ÉvÉ
õ ` , [2.4]

Fourier transform has a single maximum at v Å v0 , or to
the Gabor transform (STFT) (3) .

then the CWT may be inverted exactly and we obtain a
reconstruction formula: 3. SPECTRAL LINES

Let s be a signal of the form
s( t) Å c01

c ** c (b ,a ) ( t)S(b , a)
dadb

a
. [2.5]

s( t) Å ∑
N

lÅ1

sl( t) , [3.1]
A necessary (and almost sufficient) condition for admissibil-
ity is that the wavelet have no DC component:

where sl( t) Å Al( t)exp ivlt is the l th spectral line, which
has a constant frequency fl Å vl /2p. Its CWT is given by

cO (0) Å 0 B * c( t)dt Å 0. [2.6]

This transform is very general in the sense that there is S(b , a) Å ∑
N

lÅ1

Sl(b , a) , [3.2]
one CWT for each choice of the analyzing wavelet c. For
each application, one should select an analyzing wavelet
adapted to the type of signal at hand. For instance, in order where Sl , the CWT of sl , is
to detect and to characterize the singularities of a signal (9)
or a curve (10) , it is advantageous to use as analyzing wave-

Sl(b , a)Å 1
2p* cO (av)AO l(v0 vl)e ivbdv [3.3]let a derivative of the Gaussian. In our case, NMR signals

are relatively well defined in frequency, so it is more interest-
ing to use analyzing wavelets which are well localized in Å 1

2p
e ivlb * cO (a(v/ vl))AO l(v)e ivbdv. [3.4]

frequency space.
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3THE CONTINUOUS WAVELET TRANSFORM

Using the Taylor expansion of the Fourier transform of the to sl . The set of all the ridges is called the skeleton of the
CWT. This time-frequency decomposition can be used toanalyzing wavelet, cO , around the pulsation vl ,
estimate the characteristic parameters of a FID. In the ideal
case, each component of the FID can be modeled by

cO (a(v / vl)) Å cO (avl) / ∑
k

(av) k

k!
dkcO

dvk (avl) , [3.5]

sl( t) Å Ale
0dlte ivlt , [3.11]

we obtain the following expansion for Sl :
where Al is the real-valued amplitude, dl the damping factor,
and vl the resonance pulsation. From Eq. [3.9] , the l thSl(b , a) Å cO (avl)sl(b)
spectral line is proportional to the CWT at the scale al , so
the amplitude along the ridge must verify/ e ivlb ∑

k§1

(0ia) k

k!
dkcO

dvk (avl)
dkAl

dbk (b) . [3.6]

lnÉsl( t)É Å lnZ S( t , al)
cO (v0) Z Å 0dlt / ln Al . [3.12]

So one has

As an example, we show in Fig. 2 a synthetic FID withSl(b , a) á cO (avl)sl(b) , [3.7]
two components, its Fourier transform, its CWT (modulus
and phase) , and its decomposition into individual compo-up to first order, and
nents. From this decomposition, we extract A1 , d1 and
A2 , d2 (Fig. 2c) .

S(b , a) á ∑
N

lÅ1

cO (avl)sl(b) . [3.8] The wavelet transform gives a time-frequency decomposi-
tion of the signal. So, in the case of noisy data, the effect
of the noise is also spread in the time-frequency plane. Ac-If the values of the frequencies vl are sufficiently far away
cordingly, Donoho uses the DWT to denoise data (11) . Thefrom each other, the factor cO (avl) will allow one to treat
idea is to threshold the wavelet coefficients before recon-each spectral line independently. In this case, the contribu-
structing the data set. In our case, the noise, even if it istion of the l th spectral line to S(b , a) is localized on the
spread, makes difficult the extraction of the ridges. So, itscale al Å v0 /vl and, along the line of maxima a Å al , called
may be interesting to use a model function like [3.11] andthe l th ridge (Rl) , the CWT is approximately proportional
to consider as a priori knowledge the fact that the amplitudeto the l th spectral line:
of the CWT along a ridge behaves according to Eq. [3.12].
Work in that direction is in progress.S(b , v0 /vl)

cO (v0)
á sl(b) . [3.9]

4. ASYMPTOTIC SIGNALS

If some frequencies are too close to each other, one can The result given by Eq. [3.9] can be generalized (3, 6)
choose v0 sufficiently large so as to enforce the resolution of to a signal [3.1] , where each component has the form
the wavelet in the Fourier space. But, increasing the central
frequency of the analyzing wavelet increases the values of sl( t) Å Al( t)e if l( t ) , [4.1]
the derivatives appearing in [3.6] so that the approximation
[3.9] is no longer valid. In this case, the method consists in provided the components sl are asymptotic, i.e.,
detecting the resonance pulsation vl (by using the Fourier
spectrum or the algorithm described in (3)) and solving the Z 1

Al( t)
dAl( t)

dt Z ! Z dfl( t)
dt Z . [4.2]following system of equations:

S(b , v0 /vl) Å ∑
N

mÅ1

cO Sv0vm

vl
Dsm(b) , l Å 1, . . . , N . Let us define the instantaneous frequency of the l th compo-

nent ( this makes sense if sl is asymptotic) as

[3.10]

fl( t) Å 1
2p

dfl( t)
dt

. [4.3]
According to Eq. [3.9] , the CWT gives a decomposition

of the signal s into its components. In a first approximation,
each component sl is detected by the corresponding line of Then, as before, we define a ridge Rl , which is approximately

a line of local maxima (for a more precise definition, seelocal maxima or ridge in the wavelet transform, and along
the l th maxima line the CWT is approximately proportional Appendix B), such that:
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4 BARACHE, ANTOINE, AND DEREPPE

FIG. 2. CWT decomposition of a FID with two components: (a) the FID and its spectrum; (b) modulus, phase, and skeleton of the CWT of the
FID; (c) the CWT along the two previous ridges gives the components of the FID. For each component, the logarithm of the amplitude is plotted. The
line slopes give the damping factors, d1 Å 1/200 (top) and d2 Å 1/100 (bottom), and the values at the origin the logarithm of the real-valued amplitudes,
A1 Å 1 (top) and A2 Å 10 (bottom).

1. (detection) if the scale al √ Rl , then the instantaneous The aim of this method is to separate the different spectral
lines of a signal s and to extract their time behavior. How-frequency is
ever, a good localization in frequency is necessary in order
to separate the lines, whereas a good localization in time is

fl(b) Å 1
2p

v0

al(b)
; [4.4] required for extracting the time behavior of each line. The

balance between these two conflicting requirements gives2. (characterization) along the ridge Rl , the CWT is ap-
the limits of the method. Note, however, that more adaptiveproximately proportional to the component sl ( if cO is suffi-
algorithms have been proposed recently for obtaining a betterciently localized),
approximation (12) .

As an example, let us take a signal with an oscillatingS(b , al(b)) á dc(b)sl(b) , al(b) √ Rl , [4.5]
frequency:

where the correction term dc depends only on the analyzing
wavelet c. s( t) Å exp( i(vct / b cos(v1t))) Å A( t)e if( t ) . [4.6]

AID JMR 1214 / 6j22$$$$$3 09-10-97 06:38:54 maga



5THE CONTINUOUS WAVELET TRANSFORM

FIG. 3. Extraction of the instantaneous frequency and correction of the spectrum of the signal [4.6] with vc Å 2p ∗ 0.1, b Å 1, v1 Å 2p ∗ 0.01:
(a) modulus, phase, and skeleton of the CWT; (b) modulus and instantaneous frequency of the signal extracted from the ridge. c) Spectrum of the
signal before and after the phase correction extracted from the phase of the CWT along the ridge.

This kind of signal, which modelizes the FID of a rotating vation of important small lines. An interesting application
of the CWT is to subtract this large component from thecrystal, has been treated also by Neue (8) with the help of

the DWT. Figure 3 represents its CWT (modulus and phase) other ones. Let v1 be the resonance frequency of this line
(it can be evaluated from the Fourier spectrum directly orand the maxima of the modulus (Fig. 3a) , the modulus A( t)

and the instantaneous frequency f ( t) of the signal extracted from the CWT by an algorithm described in (4)) . The CWT
at the scale a1 Å v0 /v1 is given byfrom the maxima (Fig. 3b), and the spectrum of the signal

before and after the correction explained in the next section
(Fig. 3c) .

s (1)
1 ( t) Å S( t , a1)

cO (v0)
á A1( t)e iv1t / DS( t , a1) . [5.1]

5. REMOVAL OF A LARGE SPECTRAL LINE

In some spectra, such as spectra of polymers or proteins, The second term in [5.1] is a sum over the other spectral
lines, with the amplitudes attenuated by the exponential factor.a large spectral line precludes an easy and quantitative obser-

AID JMR 1214 / 6j22$$$$$3 09-10-97 06:38:54 maga



6 BARACHE, ANTOINE, AND DEREPPE

In order to extract only the desired spectral line, one can
iterate the procedure with s (1)

1 as the new input signal. Then
the error term becomes negligible after a certain number of
iterations. Thus the first component is completely character-
ized and can be removed from the initial signal. An example
of the remarkable efficiency of this procedure is given in Fig.
4 (see also (3, 4)). The material is polyethylene and the huge
line is the CH2 peak, which completely obliterates the fine
details (top). After subtraction of the large peak (bottom),
the smaller lines become clearly identifiable. The remarkable
fact is that these small lines have not been perturbed nor
displaced by the subtraction procedure, only slightly attenu-
ated. The reason, of course, is that they live at a scale com-
pletely different from that of the CH2 peak, and the two are
therefore completely decoupled by the CWT.

6. DYNAMICAL PHASE CORRECTION

Pulsed magnetic field gradient NMR is now a standard
technique for studying both diffusive and coherent molecular
motions.

Unfortunately, the switching of large amplitude gradients
used in this method gives rise to a number of problems.
Gradient switching can induce mechanical vibration and/or
eddy currents both in the probe and in the magnet. These
effects depend on the timing and amplitude of the gradients
and therefore introduce large errors in the measurement of
diffusion coefficients. Several techniques, such as delaying
the acquisition or using shielded gradients, have been pro-
posed in order to alleviate the problem.

However, the use of a magnetic field gradient pulse nor-
mally generates a time-dependent B0 field caused by the

FIG. 4. Subtraction of a large spectral line: (a) the original spectrum,eddy current in the bore tube and the uncorrected FID or echo from polyethylene, in the vicinity of the large CH2 peak; (b) the recon-
produces spectra with major distortions. An experimental structed spectrum after subtraction of the CH2 peak.
method (1, 13) has been proposed for eliminating the prob-
lem; it consists in extracting the time behavior of the phase
from a test signal in order to correct the other signals. How- CWT is given along the n th ridge by [4.5] . Thus the phase
ever, both the production of an appropriate test signal and of the CWT along this ridge is expressed by
the extraction of the time dependence of its phase are diffi-
cult and expensive operations. We show here that the CWT F(b , an(b)) å arg[S(b , an(b))] [6.2]
can be used for removing the distortions introduced by gradi-

Å vnb / f(b) / arg[dC(b)] , [6.3]ent switching without using a test signal, thus simplifying
the procedure considerably.

where dC(b) is given in Appendix B. Then the rephasedAs shown in Section 4, the CWT may be used for ex-
signal is simplytracting the time behavior of the phase from the signal itself.

The proof of this result consists in rephasing the spectra of
s (r ) ( t) Å s( t)e0 i (F( t ,an( t ) )0arg[dC( t ) ] ) [6.4]the acquired signals.

A NMR signal detected from the n th nuclear spin can be Å ∑
l

Al( t)e i (vl0vn ) t , [6.5]
modeled by

sn( t) Å An( t)e i (vnt/f( t ) ) , [6.1] where the n th component is chosen as a reference spectral
line.

First, we treat a spectacular example where the time de-where the effect of the eddy currents lies in the time depen-
dence of the phase f. As we have seen in Section 4, the pendence of the B0 field is known. The entire spectrum of

AID JMR 1214 / 6j22$$$$$3 09-10-97 06:38:54 maga



7THE CONTINUOUS WAVELET TRANSFORM

FIG. 5. FID perturbed by a linear time-dependent field superimposed on the static field: (a) spectrum; (b) modulus, phase, and skeleton of the CWT
around the chloroform line (left line in (a)) ; (c) modulus and instantaneous frequency of the chloroform line extracted from the ridge; (d) spectrum
around the chloroform line before (top) and after rephasing (bottom).

the distorted FID is presented in Fig. 5a. The CWT around (successively 530, 330, 100, and 33 mT/m). For each signal,
the CWT allows the extraction of the time behavior of thethe chloroform line (left line in Fig. 5a) is used to extract

the time-dependent variation of the frequency (Figs. 5b and phase and the rephasing of the spectrum.
The last example is a FID with two spectral lines per-5c) and so the time dependence of the B0 field. The other

line seen in the modulus of the CWT (Fig. 5b (top)) corre- turbed by the switching of a magnetic field gradient (Fig.
7 ( top ) ) . The FID is rephased with the phase of first linesponds to the mirror images of the TMS line (right line in

Fig. 5a) resulting from a misadjustment of the quadrature ( left ) extracted by using the CWT. The non-Lorentzian
shape of the rephased spectrum (Fig. 7 (middle ) ) is ex-detection. As a proof, the rephased spectrum around the

chloroform line is shown in Fig. 5d. plained by the fact that the switching affects not only the
phase but also the modulus of each component. As aFigure 6 presents four spectra of NMR signals acquired

on a Bruker MSL 300 equipped with a microimaging unit proof, the FID is reconstructed by fitting the modulus
of each component with a damping exponential (Fig. 7system, at a constant time of 2 ms after the switching off

of a 4-ms gradient pulse of various decreasing amplitudes (bottom) ) .

AID JMR 1214 / 6j22$$$$$3 09-10-97 06:38:54 maga



8 BARACHE, ANTOINE, AND DEREPPE

FIG. 6. Correction of four FIDs perturbed by the switching of magnetic field gradients of decreasing amplitudes (successively 530 (1), 330 (2), 100
(3), and 33 (4) mT/m): (a) spectra of the FID before correction; (b) spectra after a phase correction deduced from the phase of the CWT along the ridge.

7. CONCLUDING REMARKS Namely, it suffices to estimate the discretized Fourier trans-
form version of the analyzing wavelet at each scale, multi-

The wavelet transform (CWT or DWT) gives a time- ply the two spectra, and take an inverse (fast ) Fourier
frequency representation of a signal. This representation has transform. So the choice of the discrete scales is free and
proved to be particularly useful in dynamic NMR spectros- can be adapted to the problem. The method presented here
copy (8) . uses explicitly the redundancy of the CWT to analyze the

The discrete character of the DWT explains its popularity signals. Then the useful information is extracted from the
in the signal processing community (ease of implementa- entire time-frequency plane by using the concept of ridges
tion) . But the analysis is constrained to a fixed set of dis- introduced in (3 ) . This method, which is approximative,
crete scales (or frequencies) . Numerically, the CWT can be has the advantage of being supported by some rigorous
obtained in a straightforward way from the discrete Fourier results (see Appendix B) .
transform by applying a discretized version of Eq. [2.3] . Finally, we have discussed two applications: suppression

of a large unwanted spectral line and rephasing a spectrum
perturbed by a time-dependent magnetic field. As far as we
know, the latter is the first real application of the wavelet
transform in dynamic NMR spectroscopy. Another potential
application, already suggested by Neue (8) , would be the
study of very fast chemical reactions where the composition
of the reactant evolves within the acquisition time of the
FID. Work on this subject is in progress.

APPENDIX A

The Mathematics of the CWT

Let c be an analyzing wavelet, i.e., a function c √ L 2(R)
satisfying the admissibility condition [2.4] . Given a signal
s √ L 2(R) , its CWT with respect to c is given by Eqs.
[2.2] and [2.3] .

Then a straightforward calculation shows that this trans-
form conserves energy (in the sense of signal processing),
that is,

FIG. 7. Correction of a FID with two components perturbed by the
switching of a magnetic field gradient: spectrum (top), rephased spectrum ** ÉS(b , a)É2 dadb

a 2 Å cc *
`

0`

És( t)É2dt . [A.1]
(middle) , and the reconstructed spectrum (bottom).
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9THE CONTINUOUS WAVELET TRANSFORM

In other words, the CWT is an isometry from the space of let, for instance, the kernel K is a Gaussian; thus it never
vanishes) . At best, it is an overcomplete set of vectors,signals onto a closed subspace Hc of L 2(R 2

/ , dadb /a 2) ,
technically called a frame, provided that G contains suffi-where R 2

/ denotes the scale-position half-plane R 2
/ Å {(b ,

ciently many points (5) .a) , b √ R, a ú 0}. Therefore, the CWT may be inverted
Notice that the discretized CWT which is used in practice,on its range Hc by the adjoint map—and this gives precisely

including in the present paper, is totally different from thethe reconstruction formula [2.5] . The latter may also be
so-called discrete WT (DWT) that we now describe. Indeed,interpreted as an expansion of the signal into the wavelets
orthogonal bases of wavelets may be constructed, but fromc (b ,a ) , with (wavelet) coefficients S(b , a) .
a completely different approach. One starts with a multireso-A second important fact is the so-called reproduction
lution analysis, that is, an increasing sequence {Vj , j √ Z}property. Indeed it may be shown that the orthogonal projec-
of closed subspaces of L 2(R) such that:tion Pc from L 2(R 2

/ , dadb /a 2) onto the closed subspace
Hc ( the space of wavelet transforms) is an integral operator,

(1) >j√ZVj Å {0} and <j√ZVj dense in L 2(R) ;with kernel
(2) f ( t) √ Vj B f (2t) √ Vj/1;
(3) there exists a function f √ V0 , called a scaling func-K(b *, a* ; b , a) Å c01

c »c (b =,a = )Éc (b ,a ) … . [A.2]
tion, such that the family {f( t 0 k) , k √ Z} of its integer
translates is an o.n. basis of V0 .

In other words, a function f √ L 2(R 2
/ , dadb /a 2) is the WT

of some signal iff it satisfies the reproduction identity Condition (2) means that no scale is privileged. Combin-
ing (2) and (3), one gets an orthonormal basis of Vj , namely
{fj,k( t) å 2 j /2f(2 jt 0 k) , k √ Z}.

f (b *, a*) Å ** K(b *, a* ; b , a) f (b , a)
dadb

a 2 . [A.3]
Each Vj can be interpreted as an approximation space. The

approximation of f √ L 2(R) at the resolution 2 j is defined
by its projection onto Vj . The additional details needed forFor this reason, K is called the reproducing kernel of c. It
increasing the resolution from 2 j to 2 j/1 are given by theis also the autocorrelation function c and as such it plays
projection of f onto the orthogonal complement Wj of Vjan essential role in calibrating the CWT (7) .
in Vj/1 ,

Remark. Notice that the measure dadb /a2 on R2
/ is in-

variant under dilations and translations. This is no accident. Vj ! Wj Å Vj/1 , [A.5]
Indeed the CWT may be derived by considering the group
‘‘ax / b’’ of dilations and translations of the real line. The

and we have, for any j0 √ Z,relation [U(b , a)c]( t)Å a1/2c(b ,a ) ( t) defines a unitary repre-
sentation of this group in the space L2(R) of signals, and this
representation is square integrable, which means that there Vj0 ! S!

j§j0

WjD Å !
j√Z

Wj Å L 2(R) . [A.6]
exists nonzero functions c √ L2(R) such that the matrix
element »U(b , a)cÉc… is square integrable with respect to the

Then the theory asserts the existence of a function c,invariant measure dadb /a2 . These are precisely the admissible
called the mother of the wavelets, explicitly computablewavelets, since a direct calculation shows that
from f, such that {cj,k( t) å 2 j /2c(2 jt 0 k) , k √ Z} is an
orthonormal basis of Vj , and thus {cj,k( t) , j , k √ Z} is** É»U(b , a)cÉc…É2 dadb

a 2 Å cc\c\ 2; [A.4] an orthonormal basis of L 2(R) . These are the orthonormal
wavelets. However, the elements of that basis can seldom
be obtained analytically; they tend to be highly irregulari.e., c is admissible iff cc õ ` . All the properties of the
functions (sometimes nowhere differentiable or fractal) .CWT described above follow from these facts (5, 7) .
They are in fact obtained in an indirect fashion, through the

Now relation [A.3] shows that the CWT is enormously theory of filters familiar in signal processing (see (5) for
redundant ( the signal has been unfolded from one variable further details) .
t to two variables (b , a)) . Thus it is not surprising that all One may notice that this version of the WT, called the
the information is already contained in a small subset of the discrete or dyadic WT (DWT), is very rigid, and this ex-
values of S(b , a) . The skeleton is an example of such a plains why several generalizations have been proposed (bi-
subset. Another example is obtained by taking an appropriate orthogonal wavelets, wavelet packets, rrr) , which are more
discrete subset G Å {aj , bk} of the half-plane R 2

/ , as it is flexible and hence more suitable for applications.
necessary in any case for numerical evaluation of the inte- We emphasize that the DWT is totally different in spirit
grals. However, for most wavelets c, the resulting family from the CWT, either truly continuous or discretized, and
{c (aj ,bk )} is never an orthogonal basis (for the Morlet wave- they have complementary ranges of applications:
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• in the CWT, there is a lot of freedom in choosing the In this approximation, the modulus Ml(b , a) and the phase
Cl(b , a) of Sl are given, respectively (3, 12), bywavelet c, but one does not get an orthonormal basis, at

best a frame. This is a tool for analysis and feature determi-
nation—as in NMR spectroscopy, or other problems where

Ml(b , a) Å ÉSl(b , a)É Å Al( ts(a))

√
2p

(1 / a 4f 9 2
l ( ts))1/4the scaling properties of the signal are unknown a priori, for

instance, in fractal analysis (14) .
• in the DWT, one insists on having an orthonormal basis,

1 expS0 1
2

(b 0 ts(a))2a 2f 9 2
l ( ts)

1 / a 4f 9 2
l ( ts)

D [B.3]but the wavelet is derived from the postulated scaling func-
tion f that generates the multiresolution analysis. Together
with the generalizations mentioned above, this is the pre-

andferred tool for data compression and signal synthesis, and
the most popular in the signal processing community.

Cl(b , a) Å arg(Sl(b , a)) Å fl( ts(a))
More radically, one may even say that the kind of problems

treated here can be solved only with the CWT, that the DWT 0 v0S ts(a) 0 b

a D / 1
2

arctan(a 2f 9l ( ts))
is simply not adapted to the underlying physics. For instance,
the algorithm for detecting spectral lines, as well as the ridge
concept, rests upon a stationary phase argument. Similarly, / 1

2
(b 0 ts(a))2

r

f 9l ( ts)

1 / a 4f 9 2
l ( ts)

, [B.4]
the determination of fractal exponents exploits the scaling
behavior of homogeneous functions or distributions and the
covariance properties of the CWT. All these notions are for- where the stationary points ts(a) are such that
eign to the DWT, which is more a signal processing tool, as
used in electrical engineering, and a very powerful one. dfl

dt
( ts) Å

v0

a
. [B.5]

APPENDIX B

The Case of General Asymptotic Signals On the set of points where ts(a) Å b , Eqs. [B.3] and [B.4]
simplify considerably. This set of points is defined as a ridge,Let us consider a signal of the form
Rl , of the CWT. On a ridge, the wavelet transform is directly
related to the component sl of s ,s( t) Å ∑

l

sl( t) , [B.1]

where each component sl( t) Å Al( t)exp( ifl( t)) is asymp- Sl(b , al(b)) Å
√
2pe i /2 arctan(0a =l(b )v0)

(1 / al(b) =2v 2
0) 1/4 sl(b) Å dC(b)sl(b) ,

totic.
In the text, we have discussed in detail the case of the [B.6]

sum of spectral lines (f *l ( t ) Å vl) . The result can be
adapted directly to the case where the instantaneous fre- where al(b) is the scale on the ridge Rl at the time b and
quencies are approximatively constant (f 9l ( t ) á 0) . The a *l (b) Å dal(b) /db . The ridge of the CWT is not exactly a
wavelet transform of s is approximately given by Eqs. [3.2] maxima line, because of the term (1 / a 4f 9 2

l ( ts))1/4 in Eq.
and [3.6] , where the constant frequency vl is replaced by [B.3], which depends on the scale a . Thus another method
the instantaneous frequency f *l (b ) . In this approximation, is necessary for extracting the ridge. It is easy to show that
each component of s is given by a maxima line of its CWT the points such that ts(a) Å b verify the relations
and the term dc in Eq. [4.5] is constant, dc(b ) Å
cO (al (b )f *l (b ) ) Å

√
2p . The approximation used for the dCl(b , a)

db
Å v0

a
. [B.7]spectral lines is based on the asymptotic expansion of the

amplitude of the signal and it is justified when the instanta-
neous frequencies are constant or quasi-constant.

This equation gives a necessary condition for a point (a , b)At the other extreme, if the amplitudes are constant and the
to be on the ridge Rl , and it can be used for extracting it.instantaneous frequencies vary in time, it is more convenient

The estimation of the different asymptotic components slto use the stationary phase approximation (3, 6). The wavelet
can be improved by combining the two methods. In thistransform of sl , with the Morlet wavelet, is expressed by
case, the equation which permits extracting the ridge is more
complicated (12) .

Sl(b , a) Å 1
a * Al( t)e0 (1 /2) ( t0b ) /a )2

e i (f l( t )0v0( ( t0b ) /a ) ) dt .

Note added in proof. After this paper was submitted for publication,
another article appeared (15), in which the authors discuss in detail the[B.2]
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